 
- 帖子
- 591
- 精華
- 0
- 威望
- 53
- 魅力
- 50
- 讚好
- 0
|
9#
發表於 2007-3-2 12:35 AM
| 只看該作者
分3組4隻波子秤
, F1 c, T8 d2 I; I' @+ R% O8 b6 W+ ~3 n9 v) G
Group A: 1,2,3,44 k$ U& Q+ U# s7 \) ~+ s
Group B: 5,6,7,8/ O9 y4 D) s0 c% J- o
Group C: 9,10,11,12
8 y9 p0 y8 n& c2 U" B( [Group D: 13" @; P% V, S! j0 S1 ]8 g# q! @5 r
# r/ T6 M z3 W' |2 p. T
Round 1
' U# S9 D, Z: S' QGroup A vs Group B
! \! e' G& P/ u0 S( E如A and B一樣, 即較輕一粒在Group C or D
' U. x- B N' R: v( e* \8 s; a8 k1 A6 `1 e
Round 2
& n& F. S; t' N) v5 v再在Group C拆成:3 F8 J! u& N3 O# D% a
Group Ca: 9,10
$ u$ R4 @& V6 g! ^4 S* nGroup Cb: 11,12
% {! R+ s- X+ S$ B `* v7 E然後再秤, 如一樣, 即13為較輕一粒.2 p0 {) }2 B2 C* `
. ^8 d0 V' j& y( p
如不同, 即較輕一組有一粒較輕波子在其中, 7 A I0 o; f( j6 Z B0 U. g; s6 E
要再秤, Round 3, 之後便知答案.
2 L) `' E, z+ | y
: b. v5 N/ J' u/ {# We.g. #1 假設10為較輕的一粒4 C0 I$ P! R y4 g d7 U0 i D+ n
Round 1$ a1 u' D$ k- I6 w, _; k3 h1 J
1,2,3,4 vs 5,6,7,8 = equal
6 n9 k% O( i* n2 k# n. j( ~/ r0 {' w! Q
Round 2
, P+ T7 |: m) I' e5 Y j- G9,10 vs 11,12 = 9,10 < 11,12$ d7 d2 q+ Q N m; l
: i& A" b4 e3 e
Round 3
/ g1 |7 w; S2 e$ ?/ A9 N$ g z9 vs 10 = 9 > 10; ~; d" d& j% T( O9 z1 n: b
1 @/ c! ? z( H$ j ?
The answer is 10.
! G- |9 h- y& \3 u U, _8 s/ a# M+ W
e.g. #2 假設7為較輕的一粒( @6 u/ b$ Q& `
Round 1
- H1 e1 D, f" g; `1,2,3,4 vs 5,6,7,8 = 1,2,3,4 > 5,6,7,87 d. q) | p# }; X0 z5 ~
+ Q/ N7 Q$ b* ^; R. d' P0 @* U H
Round 2/ F, \' E# U+ K' W" G
5,6 vs 7,8 = 5,6 > 7,8
: ]: O$ e f( F. n3 u$ \2 P# v2 a$ E
Round 3" g }. n+ ~. R% d
7 vs 8 = 7 < 8
; |$ O/ A/ a: \5 i: O8 W" ]4 q( d5 K# k7 }0 N6 N1 v8 b2 x
The answer is 7.
" }" k) g0 j# l3 X- V$ h8 v. S" L. l" k
e.g. #3 假設13為較輕的一粒/ d5 e; G- W+ s [7 K" A' @1 d
Round 1
% M) q, H+ }5 @; C. L5 P# `1,2,3,4 vs 5,6,7,8 = equal
" b. }$ W* N! ?% B5 n" p( {0 z; B# c$ t& m
Round 2
1 U* O# I1 f3 P3 D# @# p8 h6 F0 c9,10 vs 11,12 = equal
. k/ G% F7 K7 Y. b o m0 y [" t0 U1 i, a" \+ q' T
No Round 3" B. Y/ K( z5 B7 \
; `8 k6 I( G0 ?/ Y1 l5 N: d, _The answer is 13.0 j" V0 R9 Y" @+ g- z; n
3 r5 [# \( f- d% t: E2 [- a
唔知我答得正唔正確呢?! 9 h6 O, G. m; A. ]3 S
2 o; P: N$ \) K
[ Last edited by hello1997 on 2007-3-2 at 12:39 AM ] |
|